fbpx Atomic-scale materials design | University of Limerick arrow
Search icon

Atomic-scale materials design

Contact: Dr Damien Thompson 
Tel. +353-61-237734

We model advanced materials for applications in health and electronics.

L-R: Dr Raghvendra Singh, Dr Pierre Cazade, Sarah Guerin, Shayon Bhattacharya, Dr Damien Thompson, Oguzhan Maraba, Geoffrey Howe, Matteo Peluso, Dr Liang Xu, and Melissa Gunno.

We design novel architectures and assemblies based on the directed self-assembly of nanoscale building blocks (molecules, monolayers, nanoparticles, and proteins) in collaboration with leading experimental and industry partners in European Framework, Science Foundation Ireland and Enterprise Ireland funded projects.  Atomic-resolution modelling of assemblies containing up to a few million atoms is performed using high performance computing facilities at the Bernal Institute UL, the Irish Centre for High End Computing and supercomputing centres throughout mainland Europe. We use modelling techniques including molecular and periodic density functional theory, replica exchange, metadynamics, and steered molecular dynamics to compute properties such as binding free energies, diffusion coefficients, and electron transport, and use more coarse-grained models where necessary to approximate larger length (micron+) and time (millisecond+) scales.

Selected recent publications include (for full updated list, see Google Scholar Damien Thompson or Researcher ID: G-6138-2015):

Selected recent publications include:

  1. Gunnoo, M.; Cazade, P.A.; Galera-Prat, A.; Nash, M.A.; Czjzek, M.; Cieplak, M.; Alvarez, B.;  Aguilar, M.; Karpol, A.; Gaub, H.; Carrión-Vázquez, M.; Bayer, E.A.; Thompson, D. (2015) Nano-scale engineering of designer cellulosomes Advanced Materials, accepted. IF = 15.4. Invited review on nano-bio engineering with co-authors from EU CellulosomePlus project.
  2.  Song, P.; Sangeeth, C.S.S.; Thompson, D.; Du, W.; Loh, K.P.; Nijhuis, C.A. (2015) NonCovalent Self-Assembled Monolayers on Graphene as a Highly Stable Platform for Molecular Tunnel Junctions. Advanced Materials, accepted. IF = 15.4. Selected as VIP paper by Advanced Functional Materials (<5% of printed papers).
  3. Jiang, L.; Sangeeth, C.S.S.; Yuan, L.; Thompson, D.; Nijhuis, C.A. (2015)  One-Nanometer Thin Monolayers Remove the Deleterious Effect of Substrate Defects in Molecular Tunnel Junctions. Nano Letters, 15, 6643. IF = 13.6. The first demonstration that molecules can compensate for defects in metal electrodes, removing the need for expensive template stripping.
  4. Yuan, L.; Nerngchamnong, N.; Cao, L.; Hamoudi, H.; Del Barco, E.; Roemer, M.; Sriramula, R.K.; Thompson, D.; Nijhuis, C.A. (2015) Controlling the direction of rectification in a molecular diode. Nature Communications, 6, 6324. IF = 11.5. Demonstration that weak molecule-surface binding can dramatically change device properties.
  5. Nirmalraj, P.; Thompson, D.; Molina-Ontoria, A.; Sousa, M.; Martín, N.; Gotsmann, B.; Riel, H. (2014) Nanoelectrical analysis of single molecules and atomic-scale materials at the solid/liquid interface. Nature Materials, 13, 947. IF = 36.5. Demonstration that molecular energy levels can be reliably measured under robust conditions of room temperature liquids.
  6. Yuan, L.; Jiang, L.; Thompson, D.; Nijhuis, C.A. (2014) On the remarkable role of surface topography of the bottom electrodes in blocking leakage currents in molecular diodes. Journal of the American Chemical Society, 136, 6554. IF = 12.1.
  7. Nerngchamnong, N.; Li, Y.; Qi, D.; Jian, L.; Thompson, D.;  Nijhuis, C.A. (2013) The role of van der Waals forces in the performance of molecular diodes. Nature Nanotechnology, 8, 113-118. IF = 34.0.
  8. Thompson, D.; Hermes, J.P.; Quinn, A.J.; Mayor, M. (2012) Scanning the potential energy surface for synthesis of dendrimer-wrapped gold clusters: design rules for true single-molecule nanostructures. ACS Nano, 6, 3007. IF = 12.9.
  9. Perl, A.; Gomez-Casado, A.;  Thompson, D.; Dam, H.; Jonkheijm, P.; Reinhoudt, D.; Huskens, J. (2011). Gradient-driven motion of multivalent ligand molecules along a surface functionalized with multiple receptors. Nature Chemistry, 3, 317-322. IF = 25.3.
  10. Gannon, G.; Larsson, J.A.; Greer, J.C.; Thompson, D. (2010). Molecular dynamics study of naturally-occurring defects in self-assembled monolayer formation. ACS Nano, 4, 921-932. IF = 12.9.


A full listing of publications for PI Damien Thompson can be viewed using Google Scholar Damien Thompson or Researcher ID: G-6138-2015.