
Applying ACO Metaheuristic to the Layer
Assignment Problem

Technical Report, UL-CSIS-06-1

Radoslav Andreev, Patrick Healy, Nikola S. Nikolov

Abstract

This report presents the design and implementation of Ant Colony
Optimisation (ACO) based heuristic for solving the Layer Assignment
Problem (LAP) for a directed acyclic graph (DAG). This heuristic
produces compact layerings by trying to minimise their width and
height. It takes into account the contribution of dummy vertices to
the width of the resulting layering.

1 Introduction

The Sugiyama framework [12] is the most well-known and studied heuristic
for drawing directed acyclic graphs. It is comprised of a number of steps one
of which consists of assigning each vertex of the graph to a layer (layering
step), which causes dummy vertex to be created every time an edge crosses
a layer. The next step is to order the vertices inside each layer so that
the number of edge crossings (dummy vertices) between any two layers is
minimised. The layering step is the one that determines what will be the
height and the width of the final drawing. Usually the height represents the
number of layers used to layer the graph and width is the maximal sum of
real vertices in one layer. Defined like this the width ignores the contribution
made by the dummy vertices. In case where the width of real vertex is much
greater than the one of a dummy vertex or the number of dummy vertices,
for any given layer, is much smaller than the number of real vertices this
definition is accurate enough. However, when dummy vertices are not so
small compared to the real ones or their number is high, ignoring them will
inevitably result in a final drawing that is much wider than expected initially.

In this report we present a layering method based on the Ant Colony
Optimisation (ACO) metaheuristic [6] which tries to minimise the width and

1

height of the layering by taking into account the contribution of dummy
vertices. To the best of our knowledge this is the first attempt to use the
ACO based algorithm to layer a directed acyclic graph. In the following we
introduce some preliminaries and discuss existing layering methods, followed
by introduction to the ACO metaheuristic and the representation of the
layer assignment problem in its terms. Further we describe the design and
the implementation of our algorithm together with a discussion about the
results achieved. Finally a conclusion and directionits for further research
are given.

2 Preliminaries

A layering of G is a partition of V into subsets L1, L2, ..., Lh, such that if
(u, v) ∈ E, where u ∈ Li and v ∈ Lj , then i > j. The layering is proper if
all edge spans equal one. This is achieved by inserting dummy vertices along
edges whose span is greater than one. The span of an edge (u, v) with u ∈ Li

and v ∈ Lj is i − j.
A layering algorithm is expected to produce a layering with specified

either width and height, or aspect ratio. The height of a layering is the
number of layers. Normally the vertices of DAGs from real-life applications
have text labels and sometimes prespecified shape. We define the width of
a vertex to be the width of the rectangle that encloses the vertex [13]. If
the vertex has no text label and no information about its shape or size is
available we assume that its width is one unit. The width of a layer is usually
defined as the sum of the widths of all vertices in that layer (including the
dummy nodes) and the width of a layering is the maximum width of a layer
[13].

The edge density between horizontal levels i and j with i < j is defined as
the number of edges (u, v) with u ∈ Lj∪Lj+1∪. . .∪Lh and v ∈ L0∪L1∪. . .∪Li.
The edge density of a layered DAG is the maximum edge density between
adjacent layers (horizontal levels) [13]. Naturally, drawings with low edge
density are more readable and easier to comprehend.

The layering of an acyclic digraph G = (V, E) is considered to be the
second step of the Sugiyama framework for drawing general digraphs with
the first being the transformation of a general digraph into acyclic. To do
this one would reverse the direction of the necessary number of edges so that
existing cycles are broken.

There are three important aspects of the layering problem [2]:

1. The layred digraph should be compact. It means that its vertices should
be evenly distributed over the drawing area.

2

2. The layering should be proper. This is easily achieved by inserting
dummy vertices.

3. The number of dummy vertices should be small.

The Layer Assignment Problem (LAP) can be stated as: Given a directed
acyclic graph (DAG), G = (V, E), find a valid layer assignment so that for
each vertex u with y-coordinate y(u) the following properties are satisfied:
[2]

1. y(u) is an integer

2. y(u) ≥ 1

3. y(u) − y(v) ≥ 1

Another definition of the LAP can be derived from the Generalised As-
signment Problem (GAP). In GAP a set of tasks i ∈ I, have to be assigned
to a set of agents j ∈ J . Each agent has only a limited capacity aj and each
task i assigned to agent j consumes a quantity rij of the agent’s capacity.
Also, the cost dij of assigning task i to agent j is given. The objective then
is to find a feasible task assignment with the minimum cost [6].

Based on the above definition, the LAP can be stated as follows:
A set of vertices v ∈ V of a directed acyclic graph, G = (V, E) has to be
assigned to a set of layers l ∈ L. Every layer has only a limited ’capacity’
(width) W . Every vertex vi assigned to layer lj consumes rij (vertex’s width)
amount of the layer’s capacity. Also, the cost dij of assigning vertex vi to a
layer lj is given as the number of dummy vertices, which edges incident to vi

will cause if that particular assignment is to be accomplished. The objective
function then is to find a feasible layer assignment for the vertices of G with
minimum cost (number of dummy vertices), while the requirement that no
layer may exceed the specified width W is satisfied.

It is NP-complete to find a layering with the minimum width when the
contribution of the dummy nodes is taken into account [3]. To tackle it
our algorithm will comprise two steps; first a layering not exceeding some
width W , given at the start, will be produced by the ant colony; second the
number of dummy vertices will be minimised subject to the width from step
one. Currently only the first step is implemented in the algorithm presented
in this report.

Let yij = 1 if vertex vi is assigned to layer lj and yij = 0 otherwise. Then
the LAP can be formally defined as:

min
m∑

j=1

n∑
i=1

dijyij (1)

3

subject to:

n∑
i=1

rijyij ≤ W, j = 1, . . . , m (2)

m∑
j=1

yij = 1, i = 1, . . . , n (3)

yij ∈ {0, 1}, i = 1, . . . , n, j = 1, . . . , m (4)

The constraints in 2 implement the limited resource capacity (width) of
the layers, while constraints given by 3) and 4 mandate that every vertex is
assigned to exactly one layer.

The following definition is needed when defining appropriate LAP repre-
sentation to be used by the Ant Colony Optimisation heuristic.
The layer span L(v) of vertex v refers to the set of layers between the topmost
and the lowermost layer on which vertex v can be placed, provided that all
edges point downwards.

3 Existing layering methods

One of the most well known layering algorithms is the Longest-Path Layer-
ing (LPL) described in Algorithm 1. It places all sink vertices in layer L1,
and each remaining vertex v is placed in layer Lp+1, where p is the longest
(maximum number of edges) path from v to a sink. The attractiveness of this
method is that it has linear time complexity (because the graph is acyclic)
and it uses the minimum number of layers possible. The disadvantage of
the LPL method is that its layerings tend to be too wide [8]. Because the
compactness of the final drawing depends on both the width and the height
the Longest-Path Layering is not the best choice if compactness of the layer-
ing is a main priority. Unfortunately, the problem of finding a layering with
minimum width, subject to having minimum height, is NP -complete [2].

Another layering method is the MinWidth heuristic displayed in Algorithm
2. It is roughly based on the LPL [11]. The authors employ two variables
widthCurrent and widthUp to keep the width of the current layer, and the
width above it, respectively. The width of the current layer, widthCurrent, is
calculated as the number of original vertices already placed in that layer plus
the number of potential dummy vertices along edges with a source in V \U
and a target in Z (one dummy vertex per edge). The variable widthUp is an
estimation of the width of any layer above the current one. It is the number
of potential dummy vertices along edges with a source in V \U and a target

4

Algorithm 1 The Longest-Path Algorithm(G)

1: Requires: DAG G = (V, E)
2:
3: U ← φ
4: Z ← φ
5: currentLayer ← 1
6: while U �= V do
7: Select node v ∈ V \ U with N+

G (v) ⊆ Z
8: if v has been selected then
9: Assign v to the layer with a number currentLayer

10: U ← U ∪ {v}
11: end if
12: if no node has been selected then
13: currentLayer ← currentLayer + 1
14: Z ← Z ∪ U
15: end if
16: end while

in the current layer (one dummy vertex per edge). When a vertex is selected
to be placed an additional condition ConditionSelect is used, which is true
if v is the vertex with the maximum out-degree among the candidates to be
placed in the current layer. Such a choice of v results in maximum reduc-
tion to widthCurrent. For thorough discussion of the MinWidth heuristic the
reader is referred to [13].

Promote Layering (PL), Algorithm 3, is a heuristic introduced in [10]
and its goal is ”to develop a simple and easy to implement layering method
for decreasing the number of dummy nodes in a DAG layered by some list
scheduling algorithm”. The PL layering method is an alternative to the
network simplex method of Gansner et. all [7] but considerably easier to im-
plement and especially useful when a commercial linear programming solver
is not available. As noted PL usually runs after a layering is produced by a
quick list scheduling algorithm like the LPL. LPL and MinWidth alone and
in combination with the PL heuristic were the two benchmark algorithms
used in this work to evaluate the performance of the ACO-based layering
algorithm. Next is an algorithm that can prodice a layering with predefined
width and guarantees that its height will be less than or equal to a certain
threshold value, is the algorithm of Coffman-Graham [4]. It takes as an input
reduced directed graph G and a positive integer W representing the desired
width for the resulting layering. The product is layering of G with width at

5

Algorithm 2 MinWidth(G)

1: Requires: DAG G = (V, E)
2:
3: U ← φ; Z ← φ
4: currentLayer ← 1; widthCurrent ← 0; widthUp ← 0
5: while U �= V do
6: Select node v ∈ V \ U with N+

G (v) ⊆ Z and ConditionSelect

7: if v has been selected then
8: Assign v to the layer with a number currentLayer
9: U ← U ∪ {v}

10: widthCurrent ← widthCurrent− wd ∗ d+(v) + w(v)
11: Update widthUp
12: end if
13: if no node has been selected OR ConditionGoUp then
14: currentLayer ← currentLayer + 1
15: Z ← Z ∪ U
16: widthCurrent ← widthUp
17: Update widthUp
18: end if
19: end while

Algorithm 3 PromoteNode(v)

Require: A layered DAG G = (V, E) with the layering information stored
in a global node array of integers called layering ; a node v ∈ V .

dummydiff ← 0
for all u ∈ N−

G (v) do
if layering[u] = layering[v] + 1 then

dummydiff ← dummydiff+ PromoteNode(u)
end if

end for
layering[v] ← layering[v] + 1
dummydiff ← dummydiff − N−

G (v) + N+
G (v)

return dummydiff

6

most W and height h ≤ (2−2/W)∗hmin, where hmin is the minimum height
of a layering of width W . We should note however that this method does
not take into account the width of the dummy vertices. This is a convenient
assumption but is accurate enough only when the width of the dummy ver-
tices is considerably smaller than the size of the real vertices. When this is
not the case the Coffman-Graham algorithm has to be adjusted to reflect the
width of the dummy vertices [2]. This method has two phases: in the first
phase it orders the vertices, and in the second it assigns them to layers.

The last existing algorithm to discuss here is the Integer Linear Program-
ming (ILP) Algorithm of Gansner, Koutsofios, North and Vo [7]. This is an
exact algorithm that can compute the minimum number of dummy vertices
in polynomial time. The problem is represented by the following integer
linear program:

min
∑

(u,v)∈E

l(u, α) − l(v, α) (5)

subject to:

l(u, α) − l(v, α) ≥ 1, ∀(u, v) ∈ E (6)

l(u, α) ≥ 0, ∀u ∈ V (7)

all l(u, α) are integer (8)

The linear programming relaxation of this integer program has always an
integer solution because its constraint matrix is totally unimodular [9]. The
algorithm of Gansner et al. has not been proven polynomial but reportedly
requires a few iterations and runs fast. In practise, the dummy vertex min-
imisation methods, such as this one, not only give shorter edge lengths and
fewer dummy vertices, but also tend to give relatively compact layerings [2].

4 Introduction to the ACO metaheuristic

Ant colonies, and more generally social insect societies, are distributed sys-
tems that, in spite of the simplicity of their individuals, represent a highly
structured social organisation. As a result of this organisation, ant colonies
can accomplish complex tasks that in some cases far exceed the individual
capabilities of a single ant [6].

7

The main idea behind the Ant Colony Optimisation (ACO) metaheuris-
tic is that self-organising principles, which allow the highly coordinated be-
haviour of real ants, can be exploited to coordinate populations of artificial
agents that collaborate to solve computational problems.

The real ants coordinate their activities via stigmergy. This is a biologi-
cal term about a form of indirect communication mediated by modifications
of the environment. The term was first introduced by the French biologist
Pierre-Paul Grasse in 1959 to refer to termite behaviour. He defined it as
“Stimulation of workers by the performance they have achieved” [1]. An ant
coming back to its nest from a food source, it has found, will deposit a chem-
ical substance called pheromone which the others will find while roaming
for food. By following the pheromone trail laid the rest of the ants would
discover that same food source. The idea is then to use a similar artificial
stigmergy, as a form of global knowledge, to coordinate societies of compu-
tational agents in an attempt to solve different combinatorial optimisation
problems.

Such a computational agent is defined as “a stochastic constructive pro-
cedure that incrementally builds a solution by adding opportunely defined
solution components to a partial solution under construction”[6]. Based on
the above definition ACO metaheuristic can be applied to any combinatorial
optimisation problem for which a constructive heuristic can be defined. ”The
real issue is to find a suitable problem representation which the artificial ants
will use to build their solutions” [6].

4.1 ACO definitions

A Tour is a single iteration during which every ant produces a solution to
the problem being solved. For a given tour all ants use the same starting
point reached by the previous tour. This approach emulate a parallel work
for all the ants comprising the colony. At the end of a tour, depending on
the pheromone update strategy adopted, either one or more ants with the
highest objective function value will deposit certain amount of pheromone
over the edges of the construction graph comprising its/their solution(s).

The process of constructing a solution by a single ant is called walk [6].
In our algorithm ants are put randomly on a vertex v and each starts con-
structing its layering from it. Once vertex is assigned the next one is chosen
again randomly and so forth until all vertices have layer assigned to them.

When performing its walk an ant executes a finite number of identical
actions called construction step [6]. At each construction step an ant ak ap-
plies a probabilistic action choice rule, called random proportional rule [6]
given by 9, to decide, which layer vertex v should be assigned to.

8

4.2 LAP representation in terms of the ACO meta-
heuristic

The first step when applying ACO to combinatorial optimisation problem is
to define the construction graph GC on which ants will perform their walks.
The LAP can be cast into the framework of the ACO metaheuristic using the
construction graph GC = (C, H). Here C = V

⋃
L is the set of components

which includes V , the vertex set of graph G that is to be layered, and L,
the set of layers. H is the set of links connecting components (vertices and
layers) from C. Note that only a lower bound of |L| is known beforehand but
not |L| itself. Each layer assignment, which consists of n couplings (vi, lj) of
vertices and layers, corresponds to at least one ant’s walk on the construction
graph and cost dij is associated with every possible coupling of vertex and
layer. In the original definition of construction graph GC H fully connects
the components of C [6]. This is not the case here because when assigning
vertex an ant will be limited to choose from layers comprising the layer span
of that particular vertex.

4.3 Constraints

Walks on the construction graph GC have to satisfy constraints 3 and 4 in
order to result in a valid assignment. One particular way of generating such
an assignments is by an ant’s walk that randomly chooses vertex v ∈ G as a
starting point and continuing with a random selection of next vertex until all
vertices of G are assigned. Additionally layers’ resource capacities (width W)
can be enforced by an appropriately defined neighbourhood. For example,
for an ant k positioned in vertex vi the neighbourhood Nk

i can be defined as
consisting of the subset of layers of L(vi) to which vi can be assigned without
exceeding W .

4.4 Pheromone trails and heuristic information

Ants construct feasible solutions by iteratively adding new components to
their partial solutions. While in the construction process ants repeatedly
have to take the following two basic decisions [6]:

1. choose the vertex to assign next;

2. choose the layer the vertex should be assigned to.

Pheromone trail information can be associated with any of the two decisions.
It can be used to learn an appropriate order for vertex assignment or it

9

can be associated with the desirability of assigning vertex vi to a specific
layer. In the former case, τij represents the desirability of assigning vertex vi

immediately after vertex vj , while in the latter it represents the desirability
of assigning vertex vi to layer lj . In our implementation we use pheromone
trail information to measure the desirability of assigning given vertex to any
of the layers from its layer span, that is, the second case. Similarly, heuristic
information ηij can be associated with any of the two decisions listed above
but again we use heuristic information for the actual assignment and not for
the order in which it is going to be done. Methods such as Breadth First
Search or other similar techniques which provide linear order of the vertices
can be used to determine the order in which vertices are to be assigned.
Random choice of the next vertex to be assigned is another option that may
be employed.

The heuristic information can be either static or dynamic. In the static
case, the values ηij are computed once at the initialisation phase of the algo-
rithm and then remain unchanged throughout the entire algorithm’s run. In
the dynamic case the heuristic information depends on the partial solution
constructed so far and therefore has to be computed at each step of an ant’s
walk. Our application of the ACO to the LAP falls into the second cate-
gory because the heuristic value ηij = 1

wij
where wij is the width of a layer

lj ∈ L(vi). Therefore after each assignment, which in fact moves vi from its
current layer lcurr to a new one lnew, the widths of those two layers must be
changed - decreased for lcurr and increased for lnew. Moreover, the widths of
the layers from L(vi) placed between lcurr and lnew also change because of
the dummy vertices induced by incoming and outgoing edges for vertex vi.
Therefore the heuristic values affected must be computed by every ant after
each assignment it has made. When constructing its walk on the construc-
tion graph an ant k that is going to assign vertex vi chooses layer lj ∈ L(vi)
with a probability given by the following equation [6]:

pk
ij =

[τij]
α [ηij]

β

Σl∈Nk
i

[τil]
α [ηil]

β (9)

Here ηij is the heuristic information that is calculated a priori and τij

is the pheromone product of the initial pheromone value, the evaporation
process and the quantity deposited by ants in previous tours. The two pa-
rameters α and β determine the relative influence of the pheromone trail
and the heuristic information. Nk

i is the feasible neighbourhood of ant k
when assigning vertex v, that is the layer span of v. The role of α and β
is the following. If α = 0, the layers from the layer span of v with smaller
widths are more likely to be selected because the influence of the pheromone

10

information is eliminated. This corresponds to a classic stochastic greedy
algorithm with multiple starting points since ants are initially randomly dis-
tributed over the vertices of the graph to be layered [6]. Conversely if β = 0,
only the pheromone information is at work, and therefore the layers that had
been selected by the majority of ants during previous tours that is, have ac-
cumulated high pheromone values, will more likely be selected. The absence
of heuristic bias generally leads to rather poor results, and in particular, for
values of α > 1 it leads to rapid emergence of a stagnation situation where
all the ants follow the same tour, which in general is strongly suboptimal [5].

4.5 Representing ants

There are a few key features that ants need to have in order to be able to
perform their walks on the construction graph and generate feasible solutions.
An ant has to be able to:

1. Memorise the partial solution it has constructed so far;

2. Determine the feasible neighbourhood for each vertex;

3. Assign a vertex to a layer subject to constraints (2) to (4);

4. Update the values of the heuristic matrix to reflect each new assign-
ment;

5. Update the layer span for a vertex;

6. Compute and store the objective function value of the solution it gen-
erates;

7. Update the pheromone matrix.

The first requirement can be satisfied by storing the partial solution (walk)
into an array indexed by the vertices of G and associating an integer value
with each vertex representing the layer number it has been assigned to. An
ant should also be able to compute the layer span of a given vertex in order
to determine its neighbourhood. Additional to the layer span an ant should
be able to calculate the number of dummy vertices a particular assignment
would cause due to incoming edges for vertex v which cross the layers above
the one to which v is assigned. These must be performed after each as-
signment. Finally, each ant should have a number of variables in which the
characteristics of the completed layering will be kept; these are the value
of the objective function, the height of the layering and the width of the
layering.

11

5 The ACO-based layering algorithm

In this approach the graph is first layered using the fast and efficient LPL
algorithm. It gives the minimum number of layers graph G can be layered
on and it is a good starting point for the Ant Colony layering algorithm.

5.1 Stretch LPL

The aim of this initial step of the algorithm is to add new layers to the ones
introduced from LPL so that the number of layers grows to n, the number
of vertices of G. By doing this we guarantee that no layering will be left
out, that is these with minimum width will also be in the search space.
This approach also enlarges the search space, giving ants greater area for
exploration. This would not be the case if they start working directly on the
resulting layering from the LPL. This layering is minimum height layering
and as such it is too restrictive for ants. The only improvement they could
make is to reduce the number of dummy vertices similarly to the PL heuristic
described in section 3. However, ants will not be able to reduce the width of
the graph significantly. If we denote the number of layers produced by LPL
as nLPL the number of layers to add is given by nnl = n − nLPL.

One way to go is to add all new layers either above or below the LPL
layers. Alternatively some of them can go above and the other below the
LPL layers (Fig. 1).

The drawback of this approach is that ants cannot move around vertices
without violating the initial direction of the edges of G. Bearing in mind
that each ant will choose a vertex randomly, unless the vertex is either a sink
or a source, the ant will have very limited options as to where to move the
vertex. Of course, if the vertex is either a sink or a source an ant will have
at its disposal (at least) half of all newly added layers but then it is hard to
determine on which layer exactly to place the vertex as no heuristic infor-
mation would be available to bias the ant’s choice. The approach suggested
here is to insert the new layers in between the LPL layers. The way to do it
is to divide the nnl to the number of interlayer spaces from the LPL which is
exactly nLPL − 1 and then insert and re-index the layers as shown on Fig. 2.

By choosing this approach over the one described in Fig. 1 the layer
span for each vertex is uniformly increased and therefore ants will have more
possibilities for changing the layer assignment of any vertex and not only the
source or sink ones.

Vertex width is another issue that needs a careful consideration. In most
real-life applications the width of dummy vertices (which in fact would be
the line representing an edge) is far less than the width of a real vertex (a

12

Figure 1: The LPL and the newly added layers on top and bottom.

rectangle with some text inside). To reflect this the ACO-based layering
algorithm allows for a variable dummy vertex width to be supplied as initial
parameter.

5.2 Initialisation phase

In this initial phase the input DAG G = (V, E) is layered by the LPL. The
resulting layering is then stretched as described in Section 5.1 allowing for
a much greater exploration area for the ants. Next step is to calculate the
layer span L(vi)∀v ∈ V . Based on the layer span of a particular vertex, its
corresponding elements from the heuristic matrix (one column per vertex)
are initialised either to 0 or 1

W (li)
depending on whether li belongs to the

layer span of that vertex or not. Here W (li) is the width of layer li. However
all elements of the pheromone matrix are initialised to τ0, the initial amount
of pheromone laid down.

13

Algorithm 4 ACO LAP (Initialisation phase)

1: Requires: DAG G = (V, E)

2: GLPL ← doLPL(G)
3: GSTR ← doStretch(GLPL)

{populate the ant colony}
4: for i = 1 to i = n ants do
5: ant colony ← ant colony ∪ anti
6: end for

{initialise layer spans; L(vi) is the layer span of vertex vi}
7: for all vi ∈ V do
8: layer spans[i] ← L(vi)
9: end for

{initialise layer widths; W (lj) is the width of layer lj}
10: for all lj ∈ GSTR do
11: layer widths[j] ← W (lj)
12: end for

13: τ ← ∅ ; η ← ∅
{column and row from τ and η correspond to vertex and layer

from GSTR}
14: for all τij ∈ τ do
15: τij ← τ0

16: end for

17: for all ηij ∈ η do
18: if lj ∈ L(vi) then
19: ηij ← 1

W (lj)

20: else
21: ηij ← 0
22: end if
23: end for

14

Figure 2: The new layers inserted between the LPL ones.

5.3 Layering phase

Once the initialisation phase is completed Algorithm 5 - Layering Phase
starts. His outermost loop runs for the specified number of tours n tours.
During a single tour each ant performs its walk on the construction graph
GC and produces a layering of GSTR. When building its solution ant ak

repeatedly assigns vertex vi (randomly chosen) to a layer lbest ∈ L(vi) that
gives best result when executing line 6.

At line 7 the actual assignment is performed, which in turns requires that
those values of the heuristic matrix η that have been affected by this partic-
ular assignment be recalculated and updated (line 8). When vi is assigned to
a layer, that is, it has been moved either up or down from its current layer,
the layer span of all neighbouring vertices of vi changes too. Therefore the
layer span for every neighbouring vertex of vi has to be recalculated (line
10) before ant ak picks up the next one. When ak has assigned all vertices
it is the end of its walk for the current tour. The objective function value is
calculated at line 13 and stored against that ant’s identifier.

At the end of a tour the evaporation step, which reduces all elements τij

of the pheromone matrix τ by a predefined evaporation rate ρ0, is executed.

15

Next, best ant for the tour abest deposits pheromone on the elements τij cor-
responding to its assignments. Additionally the heuristic matrix and layering
of abest become the starting heuristic matrix and layering for next tour.

Algorithm 5 ACO LAP (Layering phase)

1: Requires: Algorithm 4 to be run first

{begin tour}
2: for t = 1 to t = n tours do
3: for all ak ∈ ant colony do

4: {begin ant’s walk}
5: for all vi ∈ V do

6: lbest ← max

(
[τij]

α[ηij]
β

Σ
l∈Nk

i
[τil]

α[ηil]
β

)
∀lj ∈ L(vi)

7: lbest ← lbest ∪ vi

8: η ← η′
{update layer span for neighbouring nodes}

9: for all u ∈ V such that e(vi, u) ∈ E do
10: L(u) ← L′(u)
11: end for

12: {H(ak) and W (ak) - height and width of this ant’s

layering}
13: f(ak) ←

(
1

H(ak)+W (ak)

)
14: end for{end ant’s walk}
15: end for{end tour}
16: τ ←evaporate(τ)
17: τ ←abest.deposit(τ)
18: η ←abest(η)
19: end for

6 Implementation of the ACO-based layering

algorithm

The algorithm was implemented in C++ with the use of the LEDA 5.0 library
of efficient data types and algorithms 1. Three classes were used, LayredDAG,

1http://www.algorithmic-solutions.com/enleda.htm.

16

Ant, and AntColony. The class LayeredDAG inherits from LEDA’s parame-
terised graph GRAPH<int,int> and has additional methods to allow for lay-
ering of the graph. The class Ant represents a single computational agent,
which performs walks on the construction graph GC = (C, H), while building
its own solution in parallel with other agents (ants). Finally, the AntColony

class is the entity conducting the search process performed by ants.

6.1 More on the class members

LayeredDAG:

Data members

• array<double> layer widths - keeps the width of each layer;

• list<node> dummy set - this list contains all dummy vertices;

• array<list<node> > layer - each element from this array is a list
that contains the vertices assigned to a particular layer;

• list<edge> long edges - the edges that span more than one layer
are kept here;

• list<three tuple<edge, node, node> > new edges - list of newly
added edges in the format - edge, source, target. These new edges have
at least one dummy vertex as either their source or target;

• int n, m - vertices and edges of the initial graph to be layered;

• int n width - width of a real vertex;

• double dn width - width of a dummy vertex;

Methods

• assignLayers(int layering method) - layer the graph using the lay-
ering method specified as parameter;

• fillLayers() - fills the layer data structure;

• fillLayerWidths() - calculate the width for each layer and stores it
in layerWidths;

• stretchGraph() - adds new layers between the existing ones as de-
scribed earlier;

17

• insertDummyNodes() - inserts dummy vertices;

• calcLayerSpan(vertex i vertex) - returns an array of layers com-
prising the layer span L(i vertex);

• calcLayerWidth(int i layerNumber) - returns a decimal number rep-
resenting the width of a layer;

• prepareDAG() - one of the most important methods in the LayeredDAG.
It implements the initial LPL layering, inserts the new layers as de-
scribed in section 5.1 and reassigns the layer number associated with
every vertex.

Ant:

Data members

• double objectiveFuncValue - this ant’s objective function value;

• array<list<node> > antLayering - this ant’s layering;

• array<double> antLayerWidths - each ant uses its own copy of the
layerWidths data structure;

• node array<array<double> > pheromoneMatrix - this ant’s pheromone
matrix;

• node array<array<double> > heuristicMatrix - this ant’s heuris-
tic matrix;

It is necessary that each ant has its own heuristic matrix (heuristicMatrix),
layering (antLayering), and layer widths (antLayerWidths) data struc-
tures in order not to change the ones belonging to current tour while per-
forming its walk. This way every ant is building its own solution from
the same starting point, independently from the rest of the colony. How-
ever, the rationale behind keeping a local copy of the pheromone matrix
(pheromoneMatrix) is different, its sole purpose is to keep running time low
by avoiding reading heuristic values each time from the tour’s heuristic ma-
trix - property of AntColony class.

Methods

• performWalk() - governs solution building process for this ant;

18

• calculateProbability(node v) - implements the random propor-
tional rule given by 9. This method returns the layer number to which
v is to be assigned.

• moveNode(node v, int i oldLayer, int i newLayer) - moves v from
its current layer ioldLayer to inewLayer returned by calculateProbability(node

v).

• reflectNodeMovement(node v, int i oldLayer, int i newLayer) -
updates the layer spans of all neighbouring vertices of v plus antLayering,
antLayerWidths, and heuristicMatrix data structures.

• calcThisAntObjectiveFuncValue() - assesses the layering produced
by this ant.

AntColony:

Data members

• int n ants - number of ants comprising the colony;

• double initialPheromoneValue - the elements of the pheromone
matrix are initialised to this value;

• double alpha - represents the relative influence of the pheromone
information when ant makes its decision;

• double beta - represents the relative influence of the heuristic infor-
mation when ant makes its decision;

• double rho - the rate of pheromone evaporation;

• double addPheromoneValue - the amount of pheromone to be de-
posited after each tour;

Methods

• initColony(int i ants, double i initialPheromoneValue, i alpha,

i beta, ...) - populates the colony and sets its parameters;

• fillHeuristicMatrix(LayeredDAG &i inputDAG, LayeredDAG &i stretchedDAG)

- calculates the initial heuristic values for the elements of η ;

• fillPheromoneMatrix(LayeredDAG &i inputDAG, LayeredDAG &i stretchedDAG)

- sets all elements of τ to initialPheromoneValue;

19

• void runColony(int i MaxIterations) - runs the colony for the spec-
ified number of tours - i MaxIterations;

• performTour() - runs a single iteration (tour) of the algorithm;

6.2 Implementation highlights

The Ant class:
The most important method in this class is called performWalk(). First

it initialises this ants pheromone and heuristic matrices, its objective func-
tion value, as well as its own copy of the layer widths data structure. Then
it iterates randomly over all vertices of the graph to be layered. After a ver-
tex is picked up, the calcProbability() method is called, which calculate
probability values for each layer from the vertex’s layer span according to
9. The layer corresponding to the highest probability value is chosen and
the vertex is assigned to it. To accomplish this operation the algorithm in-
vokes two other methods - moveNode() and reflectNodeMovement(). The
former only removes the vertex from its current layer and adds it to the new
one. The latter method does more. Its task is to update the layer span of
all neighbouring vertices (of the vertex being moved); update layer widths
for the layers affected (those are all layers between the current and the new
layers) and finally update the column of the heuristic matrix corresponding
to this vertex.

Figure 3: Reflect vertex movement

Updating layer widths
When vertex is moved by ant, the widths of all layers between and including
the current layer and the new one, have to be updated. The algorithm used
to accomplish this is Algorithm 6. Here n width is the width of a real vertex
and nd width is the width of a dummy vertex. Additionally, outdeg(vi)

20

and indeg(vi) are the numbers of outgoing and incoming edges for vi re-
spectively. Please refer to Fig. 3 when reading the algorithm.

Algorithm 6 Updating Layer Widths

1: W (current layer) ← W (current layer) − n width
2: W (new layer) ← W (new layer) + n width
3: if new layer(vi) > current layer(vi) then
4: for all lj such that current layer(vi) ≤ lj > new layer(vi) do
5: W (lj) ← W (lj) + outdeg(vi) ∗ nd width
6: end for
7: for all lj such that current layer(vi) < lj ≤ new layer(vi) do
8: W (lj) ← W (lj) − indeg(vi) ∗ nd width
9: end for

10: else
11: for all lj such that current layer(vi) ≤ lj > new layer(vi) do
12: W (lj) ← W (lj) + indeg(vi) ∗ nd width
13: end for
14: for all lj such that current layer(vi) > lj ≥ new layer(vi) do
15: W (lj) ← W (lj) − outdeg(vi) ∗ nd width
16: end for
17: end if

The AntColony class

The main method of this class is runColony(). It calls the performTour()
method for the specified number of tours (i maxIterations), and performTour()

calls performWalk() method on each ant from the colony. That method re-
turns the objective function value the ant has achieved.

Note: When the ants produce their layering it might happen that some
of the layers between the first and the last layer remain empty. To eliminate
this after the layering is completed empty layers in the middle are removed
and layer numbers assigned to vertices are updated.

7 Experiments and Results

Experiments to evaluate the performance of Ant Colony layering algorithm
were conducted over a set of 1277 directed graphs (the AT&T graphs) avail-
able from http://www.graphdrawing.org.

21

First our algorithm was compared against the LPL algorithm and the
MinWidth heuristic. Then the two were combined with the PL heuristic
which in total resulted in four algorithms being used for the evaluation of
our algorithm. The set of 1277 graphs was divided into 19 groups according
to the number of vertices in each graph - ranging from 10 to 100 with step
5. The main goal of these initial tests was to roughly evaluate the Ant
Colony layering algorithm’s performance and the feasibility of its further
research. During the tests conducted four graph layering criteria namely -
layering width, layering height, dummy nodes count (DNC), and maximum
edge density plus a performance related one - algorithm’s running time, were
used.

The width of the Ant Colony layering compared with the other two al-
gorithms is shown on Fig. ?? and Fig. 4. It is visible that the width of the
layerings produced by our algorithm is smaller than the the width of the LPL
layerings and matches the ones resulting from the combination LPL plus PL
heuristic. The layering width is even smaller when the dummy vertices con-
tribution is not taken into account (the second diagram on Fig. ??). This is
a result of the fact that when ant decides on which layer a vertex should be
placed it uses as heuristic information the layer width estimation of all layer
candidates by giving higher priority to the layers with less nodes currently.
While it was somehow anticipated that our algorithm was going to produce
narrower layerings than the LPL, the fact that it also matches the widths of
the LPL plus the PL heuristic are rather encouraging. When compared with
the MinWidth and MinWidth with PL our algorithm performs very close to
these two algorithms especially in the case where the dummy nodes are taken
into account (the first diagram on Fig. 4). Here the winner is MinWidth com-
bined by PL followed closely by the Ant Colony layering algorithm, which in
turn shows better results than the MinWidth heuristic when run on its own.
This is not the case though when the contribution of dummy vertices is not
taken into account (the second diagram on Fig. 4). Here clearly the winner
is MinWidth followed by the MinWidth with PL and the AntColony both
showing close results.

Next criteria used were the height of the layerings and the number of
dummy nodes (DNC). The results are shown on Fig. ?? and Fig. ??. The
clear winner when it comes to the height of the layering is of course the LPL
algorithm. The Ant Colony layerings are between 20 and 30% higher than
the LPL ones and this is a result from achieving smaller layering width than
the LPL. One thing to note here is the fact that even by ”stretching” the
LPL layerings by those 20 to 30% our algorithm manages to keep the same
number of dummy vertices as the original LPL layering (second diagram on
Fig. ??). The Dummy Node Count (DNC) of the Ant Colony though is

22

greater than the LPL when combined with PL.
The last two criteria used are the Edge Density (ED) and the running time

(RT). ED is the maximum number of edges between any two layers of the
resulting layering. The lower this value is the more uniform distribution of
edges is observed in the final drawing of the graph we are layering. According
to Fig. 7 and Fig. 8 the ED of the layrings resulting from applying the Ant
Colony are between the values of the MinWidth and MinWidth with PL and
are better when compared with the LPL and LPL with PL. When comparing
the running times - as expected LPL and MinWidth are the winners. While
this was no suprise to us it was good to see that the RT of our algorithm
is not much higher when LPL and MinWidth are combined with the PL
heuristic.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

W
id

th
 (

in
cl

ud
in

g
D

um
m

y
N

od
es

)

Node count

MinWidth
MinWidth with node promotion

Ant Colony

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 10 20 30 40 50 60 70 80 90 100

W
id

th
 (

ex
cl

ud
in

g
D

um
m

y
N

od
es

)

Node count

MinWidth
MinWidth with node promotion

Ant Colony

Figure 4: Width of Ant Colony Layering Compared with MinWidth and
MinWidth with PL

8 Parameter tuning

The Ant Colony operates depending on a number of parameters that set
the number of ants, tours to be performed, initial pheromone values, rate of
pheromone evaporation and so on. There are two main parameters though
named α and β that influence the significance of the pheromone and heuris-
tic information respectively when a decision is made by the ant. Various
tests were performed for α and β ranging from 1 to 5 and the best results
were achieved for α = 3 and β = 5 followed closely by the results for α = 1
and β = 3 showing slightly lower performance but at the expense of longer
running times for the former. Therefore it was decided that 1 and 3 will be

23

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50 60 70 80 90 100

H
ei

gh
t (

nu
m

be
r

of
 la

ye
rs

)

Node count

Longest Path Layering (LPL)
LPL with node promotion

Ant Colony

 0

 2

 4

 6

 8

 10

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 d

um
m

y
no

de
s

Node count

Longest Path Layering (LPL)
LPL with node promotion

Ant Colony

Figure 5: Height and DNC of Ant Colony Layering Compared with LPL and
LPL with PL

 0

 10

 20

 30

 40

 50

 60

 10 20 30 40 50 60 70 80 90 100

H
ei

gh
t (

nu
m

be
r

of
 la

ye
rs

)

Node count

MinWidth
MinWidth with node promotion

Ant Colony

 0

 5

 10

 15

 20

 10 20 30 40 50 60 70 80 90 100

N
um

be
r

of
 d

um
m

y
no

de
s

Node count

MinWidth
MinWidth with node promotion

Ant Colony

Figure 6: Height and DNC of Ant Colony Layering Compared with Min-
Width and MinWidth with PL

24

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60 70 80 90 100

E
dg

e
D

es
ns

ity

Node count

Longest Path Layering (LPL)
LPL with node promotion

Ant Colony

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 T
im

e

Node count

Longest Path Layering (LPL)
LPL with node promotion

Ant Colony

Figure 7: Edge density and Running time of Ant Colony Layering Compared
with LPL and LPL with PL

 0

 0.5

 1

 1.5

 2

 10 20 30 40 50 60 70 80 90 100

E
dg

e
D

es
ns

ity

Node count

MinWidth
MinWidth with node promotion

Ant Colony

 0

 2

 4

 6

 8

 10

 12

 14

 10 20 30 40 50 60 70 80 90 100

R
un

ni
ng

 T
im

e

Node count

MinWidth
MinWidth with node promotion

Ant Colony

Figure 8: Edge density and Running time of Ant Colony Layering Compared
with MinWidth and MinWidth with PL

25

used as respective values for those two parameters in our further investiga-
tions. Another parameter that we have researched is the dummy vertex width
(nd width) although this is not a parameter of the Ant Colony it has, as it
proved from the tests we run, a direct influence on the quality of the final lay-
ering. We run the algorithm for values for nd width ranging from 0.1 to 1.2
with step 0.1 and the best results were achieved for nd width = 1.1 closely
followed by nd width = 1. Again the slightly better performance for 1.1
could nott justify the longer running time and therefore the nd width = 1
will be used in our experiments.

9 Conclusion

On the basis of the initial tests we can conclude that Ant Colony layer-
ing algorithm performs well when compared against the two base layering
methods LPL and MinWidth alone and combined with the PL heuristic.
Those two layering methods target two competing layering characteristics
the height (LPL) and the width (MinWidth) of a layering. The fact that the
Ant Colony layering algorithm produces comparable results (slightly worse)
in the key area for each of the two algorithms and in the same time outper-
forms them in the other layering criteria gives us hope that the algorithm is
doing what it is supposed to do and appears to be more universal than the
other two. However the running time of the AntColony is greater than any
of the two base methods and this is not a surprise because the Ant Colony
exploits the LPL to build its starting layering. When THE Ant Colony layer-
ing algorithm is compared to LPL and MinWidth with PL the running time
of the first is not significantly worse than the running time of the other two
algorithms.

10 Further research

In the near future the following directions will be followed.

1. Establish the relation between the number of vertices of the graph be-
ing layered and the value (influence) of the heuristic information in 9.
In other words if the average number of vertices per layer grows signifi-
cantly this would cause too steep a decrease of heuristic values. At some
point it might turn that they are much smaller than the pheromone val-
ues and from there all the decisions will be made almost solely based
on the pheromone values. This could lead to a stagnation in the search
process forcing ants to follow the same routs on the construction graph.

26

To detect such a trend (if present) the algorithm will be run on single
graph and the final layering will be visualised using LEDA’s GraphWin
class.

2. Run the algorithm against big graphs. These would be graphs with
couple of thousends of vertices. The idea behind this is to harness to
power of the Ant Colony and hopefully see its strength when dealing
with much larger construction graph than the ones we used in the tests
conducted so far.

References

[1] Stigmergy. Definition by Pierre-Paul Grasse. Wikipedia
http://en.wikipedia.org/wiki/Stigmergy.

[2] Giusepe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G.
Tollis. Graph Drawing: Algorithms for the visualization of graphs. Pren-
tice Hall, Inc., New Jersey, USA, 1999.

[3] Jürgen Branke, Stefan Leppert, Martin Middendorf, and Peter Eades.
Width-restricted layering of acyclic digraphs with consideration of
dummy nodes. Information Processing Letters, 81(2):59–63, 2002.

[4] E. G. Coffman and R. L. Graham. Optimal scheduling for two processor
systems. Acta Informatica, 1:200–213, 1972.

[5] Marco Dorigo, Vittorio Maniezzo, and Alberto Colorni. The Ant System:
Optimization by a colony of cooperating agents. IEEE Transactions on
Systems, Man, and Cybernetics Part B: Cybernetics, 26(1):29–41, 1996.

[6] Marco Dorigo and Thomas Stützle. Ant Colony Optimization. The MIT
Press, Cambridge, Massachusetts and London, England, 2004.

[7] Emden R. Gansner, Eleftherios Koutsofios, Stephen C. North, and
Kiem-Phong Vo. A technique for drawing directed graphs. Software
Engineering, 19(3):214–230, 1993.

[8] Patrick Healy and Nikola S. Nikolov. How to layer a directed acyclic
graph. In GD ’01: Revised Papers from the 9th International Symposium
on Graph Drawing, pages 16–30, London, UK, 2002. Springer-Verlag.

[9] G. L. Nemhauser and L. A. Wolsey. Integer and combinatorial opti-
mization. Wiley-Interscience series in discrete mathematics and opti-
mization, 1988.

27

[10] Nikola S. Nikolov and Alexandre Tarassov. Graph layering by promotion
of nodes. Discrete Applied Mathematics, 154:p.848–860, 1 April 2006.

[11] Nikola S. Nikolov, Alexandre Tarassov, and Jürgen Branke. In search for
efficient heuristics for minimum-width graph layering with consideration
of dummy nodes. The ACM Journal on Experimental Algorithmics, 10,
2004.

[12] Kozo Sugiyama. Graph Drawing and Applications for software and
knowledge engineers, volume 11 of Series on Software Engineering and
Knowledge Engineering. World Scientific, 2002.

[13] Alexandre Tarassov, Nikola S. Nikolov, and Jürgen Branke. A heuristic
for minimum-width graph layering with consideration of dummy nodes.
Lecture Notes in Computer Science, 3059:570–583, 2004.

28

